Copied to
clipboard

G = C42.159D6order 192 = 26·3

159th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.159D6, C6.982- 1+4, C12⋊Q839C2, C4⋊C4.116D6, C422C2.S3, (C4×Dic6)⋊13C2, C22⋊C4.39D6, C12.6Q88C2, Dic3.Q836C2, (C4×C12).31C22, (C2×C6).245C24, (C2×C12).93C23, C2.62(Q8○D12), C4.Dic638C2, Dic6⋊C439C2, C4⋊Dic3.53C22, C23.61(C22×S3), (C22×C6).59C23, C23.8D6.3C2, Dic3.14(C4○D4), C22.266(S3×C23), Dic3.D4.4C2, C23.16D6.3C2, Dic3⋊C4.126C22, C36(C22.35C24), (C4×Dic3).217C22, (C2×Dic3).127C23, (C2×Dic6).253C22, C6.D4.61C22, (C22×Dic3).148C22, C2.92(S3×C4○D4), C6.203(C2×C4○D4), (C3×C4⋊C4).200C22, (C3×C422C2).1C2, (C2×C4).302(C22×S3), (C3×C22⋊C4).70C22, SmallGroup(192,1260)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.159D6
C1C3C6C2×C6C2×Dic3C4×Dic3Dic6⋊C4 — C42.159D6
C3C2×C6 — C42.159D6
C1C22C422C2

Generators and relations for C42.159D6
 G = < a,b,c,d | a4=b4=1, c6=b2, d2=a2, ab=ba, cac-1=dad-1=ab2, cbc-1=a2b-1, dbd-1=a2b, dcd-1=c5 >

Subgroups: 400 in 192 conjugacy classes, 93 normal (91 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C2×C4, C2×C4, Q8, C23, Dic3, Dic3, C12, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×Q8, Dic6, C2×Dic3, C2×Dic3, C2×C12, C22×C6, C42⋊C2, C4×Q8, C22⋊Q8, C42.C2, C422C2, C422C2, C4⋊Q8, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C6.D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, C22×Dic3, C22.35C24, C4×Dic6, C12.6Q8, C23.16D6, Dic3.D4, C23.8D6, Dic6⋊C4, C12⋊Q8, Dic3.Q8, C4.Dic6, C3×C422C2, C42.159D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2- 1+4, S3×C23, C22.35C24, S3×C4○D4, Q8○D12, C42.159D6

Smallest permutation representation of C42.159D6
On 96 points
Generators in S96
(1 79 87 20)(2 74 88 15)(3 81 89 22)(4 76 90 17)(5 83 91 24)(6 78 92 19)(7 73 93 14)(8 80 94 21)(9 75 95 16)(10 82 96 23)(11 77 85 18)(12 84 86 13)(25 64 55 42)(26 71 56 37)(27 66 57 44)(28 61 58 39)(29 68 59 46)(30 63 60 41)(31 70 49 48)(32 65 50 43)(33 72 51 38)(34 67 52 45)(35 62 53 40)(36 69 54 47)
(1 76 7 82)(2 24 8 18)(3 78 9 84)(4 14 10 20)(5 80 11 74)(6 16 12 22)(13 89 19 95)(15 91 21 85)(17 93 23 87)(25 45 31 39)(26 62 32 68)(27 47 33 41)(28 64 34 70)(29 37 35 43)(30 66 36 72)(38 60 44 54)(40 50 46 56)(42 52 48 58)(49 61 55 67)(51 63 57 69)(53 65 59 71)(73 96 79 90)(75 86 81 92)(77 88 83 94)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 27 87 57)(2 32 88 50)(3 25 89 55)(4 30 90 60)(5 35 91 53)(6 28 92 58)(7 33 93 51)(8 26 94 56)(9 31 95 49)(10 36 96 54)(11 29 85 59)(12 34 86 52)(13 39 84 61)(14 44 73 66)(15 37 74 71)(16 42 75 64)(17 47 76 69)(18 40 77 62)(19 45 78 67)(20 38 79 72)(21 43 80 65)(22 48 81 70)(23 41 82 63)(24 46 83 68)

G:=sub<Sym(96)| (1,79,87,20)(2,74,88,15)(3,81,89,22)(4,76,90,17)(5,83,91,24)(6,78,92,19)(7,73,93,14)(8,80,94,21)(9,75,95,16)(10,82,96,23)(11,77,85,18)(12,84,86,13)(25,64,55,42)(26,71,56,37)(27,66,57,44)(28,61,58,39)(29,68,59,46)(30,63,60,41)(31,70,49,48)(32,65,50,43)(33,72,51,38)(34,67,52,45)(35,62,53,40)(36,69,54,47), (1,76,7,82)(2,24,8,18)(3,78,9,84)(4,14,10,20)(5,80,11,74)(6,16,12,22)(13,89,19,95)(15,91,21,85)(17,93,23,87)(25,45,31,39)(26,62,32,68)(27,47,33,41)(28,64,34,70)(29,37,35,43)(30,66,36,72)(38,60,44,54)(40,50,46,56)(42,52,48,58)(49,61,55,67)(51,63,57,69)(53,65,59,71)(73,96,79,90)(75,86,81,92)(77,88,83,94), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,27,87,57)(2,32,88,50)(3,25,89,55)(4,30,90,60)(5,35,91,53)(6,28,92,58)(7,33,93,51)(8,26,94,56)(9,31,95,49)(10,36,96,54)(11,29,85,59)(12,34,86,52)(13,39,84,61)(14,44,73,66)(15,37,74,71)(16,42,75,64)(17,47,76,69)(18,40,77,62)(19,45,78,67)(20,38,79,72)(21,43,80,65)(22,48,81,70)(23,41,82,63)(24,46,83,68)>;

G:=Group( (1,79,87,20)(2,74,88,15)(3,81,89,22)(4,76,90,17)(5,83,91,24)(6,78,92,19)(7,73,93,14)(8,80,94,21)(9,75,95,16)(10,82,96,23)(11,77,85,18)(12,84,86,13)(25,64,55,42)(26,71,56,37)(27,66,57,44)(28,61,58,39)(29,68,59,46)(30,63,60,41)(31,70,49,48)(32,65,50,43)(33,72,51,38)(34,67,52,45)(35,62,53,40)(36,69,54,47), (1,76,7,82)(2,24,8,18)(3,78,9,84)(4,14,10,20)(5,80,11,74)(6,16,12,22)(13,89,19,95)(15,91,21,85)(17,93,23,87)(25,45,31,39)(26,62,32,68)(27,47,33,41)(28,64,34,70)(29,37,35,43)(30,66,36,72)(38,60,44,54)(40,50,46,56)(42,52,48,58)(49,61,55,67)(51,63,57,69)(53,65,59,71)(73,96,79,90)(75,86,81,92)(77,88,83,94), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,27,87,57)(2,32,88,50)(3,25,89,55)(4,30,90,60)(5,35,91,53)(6,28,92,58)(7,33,93,51)(8,26,94,56)(9,31,95,49)(10,36,96,54)(11,29,85,59)(12,34,86,52)(13,39,84,61)(14,44,73,66)(15,37,74,71)(16,42,75,64)(17,47,76,69)(18,40,77,62)(19,45,78,67)(20,38,79,72)(21,43,80,65)(22,48,81,70)(23,41,82,63)(24,46,83,68) );

G=PermutationGroup([[(1,79,87,20),(2,74,88,15),(3,81,89,22),(4,76,90,17),(5,83,91,24),(6,78,92,19),(7,73,93,14),(8,80,94,21),(9,75,95,16),(10,82,96,23),(11,77,85,18),(12,84,86,13),(25,64,55,42),(26,71,56,37),(27,66,57,44),(28,61,58,39),(29,68,59,46),(30,63,60,41),(31,70,49,48),(32,65,50,43),(33,72,51,38),(34,67,52,45),(35,62,53,40),(36,69,54,47)], [(1,76,7,82),(2,24,8,18),(3,78,9,84),(4,14,10,20),(5,80,11,74),(6,16,12,22),(13,89,19,95),(15,91,21,85),(17,93,23,87),(25,45,31,39),(26,62,32,68),(27,47,33,41),(28,64,34,70),(29,37,35,43),(30,66,36,72),(38,60,44,54),(40,50,46,56),(42,52,48,58),(49,61,55,67),(51,63,57,69),(53,65,59,71),(73,96,79,90),(75,86,81,92),(77,88,83,94)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,27,87,57),(2,32,88,50),(3,25,89,55),(4,30,90,60),(5,35,91,53),(6,28,92,58),(7,33,93,51),(8,26,94,56),(9,31,95,49),(10,36,96,54),(11,29,85,59),(12,34,86,52),(13,39,84,61),(14,44,73,66),(15,37,74,71),(16,42,75,64),(17,47,76,69),(18,40,77,62),(19,45,78,67),(20,38,79,72),(21,43,80,65),(22,48,81,70),(23,41,82,63),(24,46,83,68)]])

36 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C···4G4H4I4J4K4L···4Q6A6B6C6D12A···12F12G12H12I
order122223444···444444···4666612···12121212
size111142224···4666612···1222284···4888

36 irreducible representations

dim1111111111122222444
type+++++++++++++++--
imageC1C2C2C2C2C2C2C2C2C2C2S3D6D6D6C4○D42- 1+4S3×C4○D4Q8○D12
kernelC42.159D6C4×Dic6C12.6Q8C23.16D6Dic3.D4C23.8D6Dic6⋊C4C12⋊Q8Dic3.Q8C4.Dic6C3×C422C2C422C2C42C22⋊C4C4⋊C4Dic3C6C2C2
# reps1111231131111334224

Matrix representation of C42.159D6 in GL8(𝔽13)

50000000
05000000
00100000
00010000
0000120110
00000011
00001010
00001212120
,
01000000
10000000
001200000
000120000
0000121100
00001100
00000101
00001212120
,
05000000
80000000
000120000
001120000
000012002
000010112
0000012012
000012001
,
01000000
120000000
00730000
001060000
00006500
00003700
00007439
000099910

G:=sub<GL(8,GF(13))| [5,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,1,12,0,0,0,0,0,0,0,12,0,0,0,0,11,1,1,12,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,1,0,12,0,0,0,0,11,1,1,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0],[0,8,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,12,1,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,2,12,12,1],[0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,7,10,0,0,0,0,0,0,3,6,0,0,0,0,0,0,0,0,6,3,7,9,0,0,0,0,5,7,4,9,0,0,0,0,0,0,3,9,0,0,0,0,0,0,9,10] >;

C42.159D6 in GAP, Magma, Sage, TeX

C_4^2._{159}D_6
% in TeX

G:=Group("C4^2.159D6");
// GroupNames label

G:=SmallGroup(192,1260);
// by ID

G=gap.SmallGroup(192,1260);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,120,219,268,675,570,80,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=b^2,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=a^2*b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽